Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Alexandria Engineering Journal ; 2023.
Article in English | ScienceDirect | ID: covidwho-2320037

ABSTRACT

Problem A novel coronavirus (COVID-19) has created a worldwide pneumonia epidemic, and it's important to make a computer-aided way for doctors to use CT images to find people with COVID-19 as soon as possible. Aim: In this study, a fully automated, novel deep-learning method for diagnosis and prognostic analysis of COVID-19 on the embedded system is presented. Methods In this study, CT scans are utilized to identify individuals with COVID-19, pneumonia, or normal class. To achieve classification two pre-trained CNN models, namely ResNet50 and MobileNetv2, which are commonly used for image classification tasks. Additionally, a novel CNN architecture called CovidxNet-CT is introduced specifically designed for COVID-19 diagnosis using three classes of CT scans. To evaluate the effectiveness of the proposed method, k-fold cross-validation is employed, which is a common approach to estimate the performance of deep learning. The study is also evaluated the proposed method on two embedded system platforms, Jetson Nano and Tx2, to demonstrate its feasibility for deployment in resource-constrained environments. Results With an average accuracy of %98.83 and an AUC of 0.988, the system is trained and verified using a 4 fold cross-validation approach. Conclusion The optimistic outcomes from the investigation propose that CovidxNet-CT has the capacity to support radiologists and contribute towards the efforts to combat COVID-19. This study proposes a fully automated, deep-learning-based method for COVID-19 diagnosis and prognostic analysis that is specifically designed for use on embedded systems.

2.
Neural Computing & Applications ; : 1-15, 2023.
Article in English | EuropePMC | ID: covidwho-2279298

ABSTRACT

The coronavirus (COVID-19) pandemic has a devastating impact on people's daily lives and healthcare systems. The rapid spread of this virus should be stopped by early detection of infected patients through efficient screening. Artificial intelligence techniques are used for accurate disease detection in computed tomography (CT) images. This article aims to develop a process that can accurately diagnose COVID-19 using deep learning techniques on CT images. Using CT images collected from Yozgat Bozok University, the presented method begins with the creation of an original dataset, which includes 4000 CT images. The faster R-CNN and mask R-CNN methods are presented for this purpose in order to train and test the dataset to categorize patients with COVID-19 and pneumonia infections. In this study, the results are compared using VGG-16 for faster R-CNN model and ResNet-50 and ResNet-101 backbones for mask R-CNN. The faster R-CNN model used in the study has an accuracy rate of 93.86%, and the ROI (region of interest) classification loss is 0.061 per ROI. At the conclusion of the final training, the mask R-CNN model generates mAP (mean average precision) values for ResNet-50 and ResNet-101, respectively, of 97.72% and 95.65%. The results for five folds are obtained by applying the cross-validation to the methods used. With training, our model performs better than the industry standard baselines and can help with automated COVID-19 severity quantification in CT images.

SELECTION OF CITATIONS
SEARCH DETAIL